
Code Smells and
Refactorings

Tuesday, October 22

 1

Announcements

Sprint 1 grades are out

Thursday interview with Mihai Codoban

Thursday graded class activity

Informal Early Feedback at the end of class.

 2

What are code smells?

“[...] certain structures in the code that suggest
(sometimes they scream for) the possibility of
refactoring." [Fowler]

They are clear signs that your design is starting to
decay.

…Long term decay leads to “software rot”

 3

Refactorings

The main purpose of refactoring is to fight technical
debt. It transforms a mess into clean code and
simple design.

Refactorings will change the code but not its
behavior (it still does the same thing!)

Many modern IDE's will provide automatic
refactorings

 4

 5

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 6

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 7

Bloaters

Long Method

Long Class

Long Parameter List

 8

Long Method
A method containing too many lines of code.

Any line longer than 10 lines is suspicious. More than 30
lines is problematic.

If you have to scroll to read the whole method, it is definitely
too long.

Buying a larger display is not the solution

 9

Long Method

 10

Extract Method:Refactoring
Extract parts of the code, into a new method

Use this to split the long method into manageable ones.

Good opportunities:

Code that is preceded by comments.

Long blocks in if/else/while/for statements.

Long conditions in if/else/while/for statements.

Always give the new methods a meaningful name. It should
express the intent of the method (helper1 is a very very bad name).

 11

 12

Long Class
A class contains many fields/methods/lines of code.

It breaks SRP

 13

Refactoring

Extract Class to split the class into multiple smaller
ones

 14

Long Parameter List
Any method that has more than 4 parameters has too
many

This is an indication of an inadequate abstraction
level: too low

 15

Refactoring
The parameters can be encapsulated in their own
objects, using introduce parameter object

If a parameter is passed repeatedly to multiple
methods, it can be stored as a field

If the parameters are fields that belong to a another
object, the whole object can be passed as a
parameter

 16

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 17

OO Abusers

Refused Bequest

Switch Statement

 18

Refused Bequest
A subclass that uses only some of the inherited fields
and method

The unneeded methods are unused or redefined to
do nothing (or throw exceptions)

 19

Refactoring
Extract Superclass: Extract the common behavior
needed by the subclass into a separate superclass,
and extend from that

Replace Inheritance with Delegation: Extract the
common behavior in another class, delegate
methods to the super class

 20

Switch statements
A complex switch operator or a sequence of if
statements.

It's an indication of a missing class hierarchy.

 21

Refactoring

Replace the switch/if statement with an inheritance
hierarchy.

Each branch of the switch/if becomes part of
subclass.

 22

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 23

Shotgun Surgery
Shotgun Surgery is a change preventer.

Making any modifications requires many small
changes to many different classes

A single responsibility has been distributed among
different classes.

 24

Refactoring
You want to consolidate that responsibility into a
single place.

Use Move Method and Move Field to move the
existing behavior to the right class.

 25

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 26

Dispensables

Duplicated Code

Data Class

Speculative Generality

 27

Duplicated Code

Two code fragments look almost identical.

Changes need to be performed to both copies.

 28

Refactoring
If the duplicated code is in the same class you
Extract Method and place calls to the new method in
both places.

If the two methods are "independent," use Extract
Superclass to extract a common superclass.

If it is on the same level of a class hierarchy, use
Extract Method for both classes, then Pull Up
Method to move that method to the superclass.

 29

Data Class
Contains only fields and crude methods for
accessing them (getters and setters).

They are simply containers for data used by other
classes.

 30

Refactoring

Look at the client code (consumer). It's very likely that
the client has responsibilities that can be moved to
the data class.

Move Method and Extract Method can be used to
move functionality to the data class.

 31

Speculative Generality
Unused classes, fields or parameters

Code that is created "just in case" to support
anticipated future features that never get
implemented.

e.g. Abstract classes that are only implemented by
one subclass

 32

Refactoring
Unused abstract classes can be removed using
Collapse Hierarchy

Unnecessary classes can be removed via Inline
Class

Unused fields and method can be simply removed.

 33

Move to in-line class

 34

Code Smells
Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

OO Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

 35

Couplers

Feature envy

Inappropriate intimacy

 36

Feature Envy

A method accesses the data of another object more
than its own data.

 37

Refactoring

Use Move Method to move the methods to another
place

If only part of a method is envious, then use Extract
Method, together with Move Method

 38

Inappropriate Intimacy
One class uses the internal fields and methods of
another class.

Good classes should know as little about each other
as possible.

 39

Refactoring

Use Move Method and Move Fields to move parts
from one class to the other.

 40

Class exercise (in Pairs)

Look at the code that you downloaded from GitHub

 https://github.com/cs361fall2018/videostore

Identify the code smells in the code base

 41

Class exercise (in Pairs)
Look at the code that you downloaded from GitHub

 https://github.com/cs361fall2018/videostore

Identify the code smells in the code base

Now what refactoring will you do to clean the code
smell?

 42

