Code Smells and
Refactorings

Tuesday, October 22

Announcements

Sprint 1 grades are out
Thursday interview with Mihai Codoban
Thursday graded class activity

Informal Early Feedback at the end of class.

A2
Oregon State
2 &’ University

What are code smells”?

“[...] certain structures in the code that suggest
(sometimes they scream for) the possibility of

refactoring.” [Fowler]

They are clear signs that your design is starting to
decay.

...Long term decay leads to “software rot”

42D
Oregon State
3 &’ University

Refactorings

The main purpose of refactoring is to fight technical
debt. It transforms a mess into clean code and
simple design.

Refactorings will change the code but not its
behavior (it still does the same thing!)

Many modern IDE's will provide automatic
refactorings

o
S4P8 Oregon State

4 &’ University

Refactor Build Run Tools VCS Window Help

Refactor This... pntroller
Rename...

Rename File...

Change Signature...

Move...
Copy...

Safe Delete... esults

Extract

Inline...

Find and Replace Code Duplicates...
Invert Boolean...

Pull Members Up...

Push Members Down...

Use Interface Where Possible...
Replace Inheritance with Delegation...

Wrap Method Return Value...

Replace Temp with Query...

Generify...
Migrate...

Modularize...
Remove Unused Resources...
Migrate App To AppCompat...

o
Oregon State
&’ University

Code Smells

Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

00 Abusers: Incomplete or incorrect application of object-
oriented programming principles;

Change Preventers: Any change requires you to make many
changes in other places too;

Dispensables: Something pointless whose absence would
make the code better;

Couplers: Excessive coupling between classes.

A2
Oregon State
6 &’ University

Code Smells

Bloaters: Code, methods and classes that have increased to
such gargantuan proportions that they are hard to work with;

A2
Oregon State
7 &’ University

Bloaters

Long Method

Long Class

Long Parameter List

. ong Method

A method containing too many lines of code.

Any line longer than 10 lines Is suspicious. More than 30
lines is problematic.

It you have to scroll to read the whole method, it is definitely
too long.

Buying a larger display is not the solution

e ﬁ

SuP Oregon State
9 &’ University

99=

100
101
192
103
104
105
1906
107
108
199
110
111
112
113
114
115
116
117
118
114

95

296

298
299
300
301
302
303
304
305

AL

. ong Method

public <S extends Sequence> MergeResult<S> merge(

SequenceComparator<S> cmp, S base, S ours, S theirs) {
List<S> sequences = new ArraylList<S>(3);
sequences.add(base);
sequences.add(ours);
sequences.add(theirs);

MergeResult<S> result = new MergeResult<S>(sequences);

if (ours.size() == 0) {
if (theirs.size() = @) {

EditList theirsEdits = diffAlg.diff(cmp, base, theirs);

if (!theirsEdits.isEmpty()) {
// we deleted, they modified -> Let their complete content
// conflict with empty text
result.add(1l, @, @, ConflictState.FIRST_CONFLICTING_RANGE);
result.add(2, @, theirs.size(),

ConflictState.NEXT_CONFLICTING_RANGE);

} else
// we deleted, they didn't modify -> Let our deletion win
result.add(l, @, @, ConflictState.NO_CONFLICT);

1 ealce

current = Math.max(oursEdit.getEndA(), theirsEdit.getEndA());
ourskEdit = nextOursEdit;
theirsbEdit = nextTheirsEdit;

}
}

// maybe we have a common part behind the last edit: copy it to the
// result
if (current < base.size()) {

result.add(@, current, base.size(), ConflictState.NO_CONFLICT);

}

return result;

10

Lo
1) Oregon State

University

Extract Method:Retactoring

Extract parts of the code, into a new method
Use this to split the long method into manageable ones.
Good opportunities:

Code that is preceded by comments.

Long blocks in if/else/while/for statements.

Long conditions in if/else/while/for statements.

Always give the new methods a meaningful name. It should
express the intent of the method (helper1 is a very very bad name).

A2
Oregon State
11 &’ University

void printOwing() {
printBanner();

//print details
System.out.println("name: " + name);
System.out.println("amount: " + getOutstanding());

void printOwing() {
printBanner();
printDetails(getOutstanding());
by

void printDetails(double outstanding) {
System.out.println("name: " + name);
System.out.println("amount: " + outstanding);

¥
Oregon State
12 &’ University

| ong Class

A class contains many fields/methods/lines of code.

It breaks SRP

- J=

%g*

2.
¢%Q%%
\)

L

A2
Oregon State
13 &’ University

Refactoring

Extract Class to split the class into multiple smaller

ONes

Person

name
officeAreaCode

officeNumber

getTelephoneNumber()

Person

7

name

TelephoneNumber

getTelephoneNumber()

14

>

officeAreaCode
officeNumber

getTelephoneNumber()

o
Oregon State
&’ University

| ong Parameter List

Any method that has more than 4 parameters has too
many

This is an indication of an inadequate abstraction
level: too low

A2
Oregon State
15 &’ University

Refactoring

The parameters can be encapsulated in their own
objects, using introduce parameter object

It a parameter is passed repeatedly to multiple
methods, it can be stored as a field

If the parameters are fields that belong to a another
object, the whole object can be passed as a

parameter

o
S4P8 Oregon State

16 &’ University

Code Smells

00 Abusers: Incomplete or incorrect application of object-
oriented programming principles;

A2
Oregon State
17 &’ University

OO Abusers

Refused Beqguest

Switch Statement

98 Oregon State
University

18

Refused Bequest

A subclass that uses only some of the inherited fields
and method

The unneeded methods are unused or redefined to
do nothing (or throw exceptions)

ANIMAL

LEGS
ANAAA

AN

DOG CHAIR
LEGS LEGS

D

VaVaVaAVAVaVAN VAVAVAVAVAVAN 97...

AAAAAA AAAAAA éﬁu(h?goqsune
19 & University

Refactoring

Extract Superclass: Extract the common behavior
needed by the subclass into a separate superclass,
and extend from that

Replace Inheritance with Delegation: Extract the
common behavior in another class, delegate

methods to the super class
>

ANIMAL
@ AAAAAA

\/ AAAAAA
a AAMAAA
» &> AAAAA LEGS
AAAA
CHAIR AAAMA
AAMAAA

AN LR
SuP Oregon State
20 &’ University

Switch statements

A complex switch operator or a sequence of if
statements.

lt's an indication of a missing class hierarchy.

o
S4P8 Oregon State

21 &’ University

Refactoring

Replace the switch/if statement with an inheritance
hierarchy.

Each branch of the switch/if becomes part of
subclass.

A2
Oregon State
22 &’ University

Code Smells

Change Preventers: Any change requires you to make many
changes in other places too;

A2
Oregon State
23 &’ University

Shotgun Surgery

Shotgun Surgery is a change preventer.

Making any modifications requires many small
changes to many different classes

A single responsibility has been distributed among

different classes. FEATUL
BaC

i g L
)

o
Oregon State
&’ University

Refactoring

You want to consolidate that responsibility into a
single place.

Use Move Method and Move Field to move the
existing behavior to the right class.

A2
Oregon State
25 &’ University

Code Smells

Dispensables: Something pointless whose absence would
make the code better;

A2
Oregon State
26 &’ University

Dispensables

Duplicated Code
Data Class

Speculative Generality

98 Oregon State
University

27

Duplicated Code

Two code fragments look almost identical.

Changes need to be performed to both copies.

98 Oregon State
University

28

Refactoring

It the duplicated code is in the same class you
Extract Method and place calls to the new method In
both places.

It the two methods are "independent,” use Extract
Superclass to extract a common superclass.

If it IS on the same level of a class hierarchy, use
Extract Method for both classes, then Pull Up
Method to move that method to the superclass.

o
S4P8 Oregon State

29 &’ University

Data Class

Contains only fields and crude methods for
accessing them (getters and setters).

They are simply containers for data used by other
classes.

\

o
S4P8 Oregon State

30 &’ University

Refactoring

Look at the client code (consumer). It's very likely that
the client has responsibllities that can be moved to
the data class.

Move Method and Extract Method can be used to
move functionality to the data class.

o
S4P8 Oregon State

31 &’ University

Speculative Generality

Unused classes, fields or parameters

Code that is created "just in case’ to support
anticipated future features that never get
implemented.

e.q. Abstract classes that are only implemented by
one subclass B =

AN AN vV AN
ANNAA AANAAAA AN AN ANAAA
AN
AAAAAA '
AAAAAA AN

1 o [For FUTURE |
i i o
l s ,lL Oregon State
32 &’ University

Refactoring

Unused abstract classes can be removed using
Collapse Hierarchy

Unnecessary classes can be removed via Inline
Class

Unused fields and method can be simply removed.

Oregon State
&’ University

Vove to In-line class

Person

1 TelephoneNumber

name

1 > officeAreaCode
officeNumber

getTelephoneNumber()

getTelephoneNumber()

v

Person

name
officeAreaCode

officeNumber

getTelephoneNumber()

34

o
Oregon State
&’ University

Code Smells

Couplers: Excessive coupling between classes.

A2
Oregon State
35 &’ University

Couplers

Feature envy

Inappropriate intimacy

A2
Oregon State
36 &’ University

-eature Envy

A method accesses the data of another object more
than its own data.

98 Oregon State
University

37

Refactoring

Use Move Method to move the methods to another
place

It only part of a method is envious, then use Extract
Method, together with Move Method

A2
Oregon State
38 &’ University

lnappropriate Intimacy

One class uses the internal fields and methods of
another class.

Good classes should know as little about each other
as possible.

98 Oregon State
University

39

Refactoring

Use Move Method and Move Fields to move parts
from one class to the other.

98 Oregon State
University

40

Class exercise (in Pairs)

Look at the code that you downloaded from GitHub
https://github.com/cs361fall2018/videostore

|dentify the code smells in the code base

98 Oregon State
University

41

Class exercise (in Pairs)

Look at the code that you downloaded from GitHulb
https://github.com/cs361fall2018/videostore

|[dentify the code smells in the code base

Now what refactoring will you do to clean the code
smell?

98 Oregon State
University

42

