
Design Patterns

 1

Announcements

Graded in-class assignment on Tuesday

Next Thursday, there will be in class Sprint 3 lab

 2

Christopher Alexander

Architect, who asked the question "What makes
good architectural design?"

By studying high quality structures that solve similar
patterns, he saw that patterns would appear the
solutions to the problems.

He identified over 200 pattern for city planning,
building design, gardens etc.

 3

Patterns

"Each pattern is a three-part rule, which expresses
a relation between a certain context, a problem,

and a solution."
-Christopher Alexander

 4

Patterns

Four elements describe the pattern:

The name

The purpose; what problem is solves

How to solve the problem; the solution

The constraints we have to consider in our solution

 5

A higher level perspective

 6

A higher level perspective

Patterns also describe a shared vocabulary.

Which one is better?

“Should we use a dovetail or miter joint?”

or

“Should I make the joint by cutting down into the
wood and then going back up 45 degrees and...”

 7

A higher level perspective
The former avoids getting bogged down in details

The former relies on the carpenter's shared
knowledge

[Design patterns] distill and provide a means to
reuse the design knowledge gained by

experienced practitioners.
-G.O.F.

 8

Software Design Patterns

The seminal book published by
the "Gang of Four."

They propose 23 patterns,
organized in 3 categories.

 9

Key Features of a Pattern
Name

Intent: The purpose of a
pattern.

Problem: What problem
does it solve?

Solution: The approach
taken.

 10

Participants: The entities
involved in the pattern.

Consequences: The effect
the pattern has on your
code.

Implementation: Example
ways to implement it

Structure: a class diagram

Software Design Patterns
3 Categories:

Creational: they abstract away the object
instantiation (creation)

Structural: are concerned with how classes and
objects are composed to form larger structures

Behavioral: are concerned with algorithms and the
assignment of responsibilities between objects.

 11

Creational patterns

 12

Why not use new?

new binds you to a specific class

What if you want to instantiate different classes (in a
class hierarchy) depending on different conditions?

What if you want to restrict how many objects are
created (e.g. access to limited resources)

 13

Singleton

Intent: ensure a class has only one instance, and
provide a global point of access to it.

Motivation: having a single instance of a class is
sometimes important; e.g. There can be only one file
system or event thread.

 14

Singleton
We want to restrict access such that this is no longer
possible:

Singleton s = new Singleton();

Instead, we want to do this:

Singleton s = Singleton.getInstance();

We want to ensure that only a unique instance
exists.

 15

public class Singleton {
 private static Singleton s = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (s == null)
 s = new Singleton();
 return s;
 }
}

 16

public class Singleton {
 private static Singleton s = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (s == null)
 s = new Singleton();
 return s;
 }
}

 16

Declaring the constructor
private means we cannot create
instances outside of the class.

Therefore, we control where an
object can be instantiated.

public class Singleton {
 private static Singleton s = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (s == null)
 s = new Singleton();
 return s;
 }
}

 16

The static keyword allows us to
access fields and methods
without an instance:

Singleton.getInstance();

public class Singleton {
 private static Singleton s = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (s == null)
 s = new Singleton();
 return s;
 }
}

 16

This is called lazy initialization. We
only create the object when we need
them.

public class Singleton {
 private static Singleton s = null;

 private Singleton() {}

 public static Singleton getInstance() {
 if (s == null)
 s = new Singleton();
 return s;
 }
}

 16

Structure

 17

Pros & Cons
Pros:

Easy instance management

Cons:

It acts like a global variable and shares all the
problems associated with them

Breaks SRP, as the objects now has to control it's
own lifetime cycle

 18

Factory Method

Intent: Define an interface for creating an object. Let
subclasses decide which class to instantiate.

Motivation: Frameworks use abstract classes and
maintains a relationship between objects. The
framework also instantiates the objects.

The instantiated objects are sometimes knows as
products.

 19

Factory Method

Like with Singletons, we want to restrict how objects
are created. This should be impossible:

Transport Truck = new Truck();

And it is replaced with:

Transport object =
logistics.makeInstance();

 20

public class RoadLogistics extends
Logistics {

 private RoadLogistics() {}

 public Transport makeInstance() {
 return new Truck();
 }
}

 21

public class RoadLogistics extends
Logistics {

 private RoadLogistics() {}

 public Transport makeInstance() {
 return new Truck();
 }
}

 21

We declare the constructor as
private, to control how objects
are created.

public class RoadLogistics extends
Logistics {

 private RoadLogistics() {}

 public Transport makeInstance() {
 return new Truck();
 }
}

 21

public class RoadLogistics extends
Logistics {

 private RoadLogistics() {}

 public Transport makeInstance() {
 return new Truck();
 }
}

 21

We create the object inside the
method. We can now control
which object we create, and
subclasses can change this

Structure

 22

Pros & Cons
Pros:

Follows OCP

Makes adding new products easy

Moves creating objects to one place

Cons:

Extra complexity due to the class hierarchy

 23

Structural Patterns

 24

Composite

Intent: compose objects into tree structures to
represent part-whole hierarchies. Clients can treat
individual objects and compositions uniformly.

Motivation: A file system has files and folders. Users
want to manipulate files and folders the same way
(e.g. move, rename, delete etc).

 25

Composite

 26

public abstract class FileSystemElement {
 public void move(){}
 public void rename(String newName){}
 public void delete(){}
}

public class Folder extends FileSystemElement {
 private List<FSE> children = new ArrayList<>();

 public void addChild(FileSystemElement child) {
 children.add(child);
 }

 public void removeChild(FileSystemElement child) {
 children.remove(child);
 }
}

public class File extends FileSystemElement {
 // do file stuff
}

 27

public abstract class FileSystemElement {
 public void move(){}
 public void rename(String newName){}
 public void delete(){}
}

public class Folder extends FileSystemElement {
 private List<FSE> children = new ArrayList<>();

 public void addChild(FileSystemElement child) {
 children.add(child);
 }

 public void removeChild(FileSystemElement child) {
 children.remove(child);
 }
}

public class File extends FileSystemElement {
 // do file stuff
}

 27

The base class contains the common
operations for a "File System Element"

abstract means that it cannot be
instantiated.

public abstract class FileSystemElement {
 public void move(){}
 public void rename(String newName){}
 public void delete(){}
}

public class Folder extends FileSystemElement {
 private List<FSE> children = new ArrayList<>();

 public void addChild(FileSystemElement child) {
 children.add(child);
 }

 public void removeChild(FileSystemElement child) {
 children.remove(child);
 }
}

public class File extends FileSystemElement {
 // do file stuff
}

 27

The Folder class is the container.

It's responsibility is managing and accessing the
children.

It may override some common operations (e.g.
delete)

public abstract class FileSystemElement {
 public void move(){}
 public void rename(String newName){}
 public void delete(){}
}

public class Folder extends FileSystemElement {
 private List<FSE> children = new ArrayList<>();

 public void addChild(FileSystemElement child) {
 children.add(child);
 }

 public void removeChild(FileSystemElement child) {
 children.remove(child);
 }
}

public class File extends FileSystemElement {
 // do file stuff
}

 27

The File class is the leaf, as it had
no children.

Pros & Cons
Pros:

It's easy to add new types of components

Clients can manipulate both types homogeneously.

Cons:

It's hard to restrict the types of a component (design
is too general)

 28

Facade

Intent: provide a unified interface to a set of
interfaces in a subsystem. It defines a higher-level
interface that makes the subsystem easier to use.

Motivation: Structuring a system into subsystems
reduces complexity. Facade provides a single,
simplified interface to the subsystem.

 29

Facade

 30

Pros & Cons
Pros:

Isolates clients from subsystem components

Minimizes the dependency of the client code on the
subsystems

Cons:

The Facade class risks accumulating a lot of
responsibility because it is linked to all the classes in
the application

 31

Behavioral Patterns

 32

Template Method

Intent: define a skeleton of an algorithm and defer
some steps to subclasses.

Motivation: The Android OS must support multiple
types of app. These apps all have a common
lifecycle and need to handled uniformly by the OS.

 33

Template Method

 34

Template Method

The base class provides the basic steps of the
algorithm.

The subclasses provide the details.

 35

public abstract class Activity {
 final void performCreate(Bundle icicle) {
 restoreHasCurrentPermissionRequest(icicle);
 onCreate(icicle);
 mActivityTransitionState.readState(icicle);
 performCreateCommon();
 }

 public abstract void onCreate(Bundle bundle);
}

public class MyApp extends Activity {
 @Override
 public void onCreate(Bundle bundle) {
 // app specific stuff goes here
 }
}

 36

public abstract class Activity {
 final void performCreate(Bundle icicle) {
 restoreHasCurrentPermissionRequest(icicle);
 onCreate(icicle);
 mActivityTransitionState.readState(icicle);
 performCreateCommon();
 }

 public abstract void onCreate(Bundle bundle);
}

public class MyApp extends Activity {
 @Override
 public void onCreate(Bundle bundle) {
 // app specific stuff goes here
 }
}

 36

(Part of) the algorithm for starting
an Activity.

public abstract class Activity {
 final void performCreate(Bundle icicle) {
 restoreHasCurrentPermissionRequest(icicle);
 onCreate(icicle);
 mActivityTransitionState.readState(icicle);
 performCreateCommon();
 }

 public abstract void onCreate(Bundle bundle);
}

public class MyApp extends Activity {
 @Override
 public void onCreate(Bundle bundle) {
 // app specific stuff goes here
 }
}

 36

The specific details are
handled by the
subclasses.

Pros & Cons

Pros:

Helps eliminate code duplication

Easy to customize the algorithm

Cons:

Your options are limited by the existing skeleton

 37

Observer

Intent: Define a one-to-many relationship between
objects, so that when one object changes its state,
the dependents are notified and updated
automatically.

Motivation: An online store is about to receive a
large shipment of a high demand product. The store
wants to notify the customers when the product is in
stock.

 38

Observer

 39

public abstract class Observable {

 private List<Observer> observers = new ArrayList<>();

 public void subscribe(Observer o) {
 observers.add(o);
 }

 public void unsubscribe(Observer o) {
 observers.remove(o);
 }

 public void notify(Object data) {
 for(Observer o : observers) {
 o.notify(data);
 }
 }

}

public abstract class Observer {
 public abstract void notify(Object data);
}

 40

public abstract class Observable {

 private List<Observer> observers = new ArrayList<>();

 public void subscribe(Observer o) {
 observers.add(o);
 }

 public void unsubscribe(Observer o) {
 observers.remove(o);
 }

 public void notify(Object data) {
 for(Observer o : observers) {
 o.notify(data);
 }
 }

}

public abstract class Observer {
 public abstract void notify(Object data);
}

 40

The Observable keeps track of
observers and provides methods to
subscribe and unsubscribe

public abstract class Observable {

 private List<Observer> observers = new ArrayList<>();

 public void subscribe(Observer o) {
 observers.add(o);
 }

 public void unsubscribe(Observer o) {
 observers.remove(o);
 }

 public void notify(Object data) {
 for(Observer o : observers) {
 o.notify(data);
 }
 }

}

public abstract class Observer {
 public abstract void notify(Object data);
}

 40

It also handles notifying
the observers

public class Product extends Observable{
 public void updateStock(int units) {
 //
 this.notify(units);
 }
}

public class Customer extends Observer {
 public void notify(Object data) {
 // react to the notification
 }
}

 41

public class Product extends Observable{
 public void updateStock(int units) {
 //
 this.notify(units);
 }
}

public class Customer extends Observer {
 public void notify(Object data) {
 // react to the notification
 }
}

 41

The client can notify all the
observers of the change.

public class Product extends Observable{
 public void updateStock(int units) {
 //
 this.notify(units);
 }
}

public class Customer extends Observer {
 public void notify(Object data) {
 // react to the notification
 }
}

 41

The observer can deal with the
notification in any way it sees fit.

Pros & Cons
Pros:

Observers are isolated from Observables

You can dynamically subscribe and unsubscribe

Cons:

The order in which Observers are called might not
be deterministic.

 42

