
Design Patterns 2
Tuesday, November 13

 1

Announcements

Sprint 4 overview

Tomorrow, short intro from the InnovationX center

 2

Command

Intent: Encapsulate a request as an object, thereby
letting you parameterize clients with different
requests, queue or log requests, and support
undoable operations.

Motivation: When you need to issue a request,
without knowing anything about the receiver.

 3

Command

 4

Command

The caller does not know which command subclass it
uses

Command subclasses stores the receiver of the
request, and perform operations.

 5

Consequences

It allows you to parameterize objects with an action
to perform. It's the callback of the OO world.

Allows for undo and redo. The command needs to
support an unexecute operation.

Allows for a transaction log.

 6

Undo and redo

Hysteresis can be a problem in ensuring a reliable
and semantics preserving undo/redo mechanism.

Sometimes, the commands need to store extra info,
to guarantee that object are restored to their original
state.

When using a history-list, you might need to create a
new command object for each invocation.

 7

Intent: Avoid coupling the sender of a request with its
receiver by giving more than one object a chance to
handle the request.

Motivation: Find the right executable to call, from a
list of valid paths ($PATH).

Chain of Responsibility

 8

Chain of Responsibility

 9

public class PathHandler {
private PathHandler next;
public File findExecutable(String name) {
return next.findExecutable(name)
}
}
}

public class LocalHandler extends PH {
public File findExecutable(String name) {
if (canHandle()) {…}
else super.findExecutable(name);
}
}

 10

public class PathHandler {
private PathHandler next;
public File findExecutable(String name) {
return next.findExecutable(name)
}
}
}

public class LocalHandler extends PH {
public File findExecutable(String name) {
if (canHandle()) {…}
else super.findExecutable(name);
}
}

 10

The default implementations
asks the next handler in the
chain to fulfill the request

public class PathHandler {
private PathHandler next;
public File findExecutable(String name) {
return next.findExecutable(name)
}
}
}

public class LocalHandler extends PH {
public File findExecutable(String name) {
if (canHandle()) {…}
else super.findExecutable(name);
}
}

 10

Each client handles the request, if
they can. Otherwise, it asks the next
handler in the chain.

public class PathHandler {
private PathHandler next;
public File findExecutable(String name) {
return next.findExecutable(name)
}
}
}

public class LocalHandler extends PH {
public File findExecutable(String name) {
if (canHandle()) {…}
else super.findExecutable(name);
}
}

 10

Chain of Responsibility

You can easily extend the event handling.

The event handling logic is dynamic.

Receipt of the event it not guaranteed. If you want
the request to be handled, you need to properly
configure the chain.

 11

State

Motivation: Allow an object to change its behavior
when its state changes.

Intent: Consider a TCP connection. It has 3 states:
Established, Listening and Closed. The effect of an
open request depends on the connection state.

 12

public void open() {
state.open()
}

State

The TCPConnection is sometimes referred to as a
context. The context passes information, or itself, to
the state object, so it can fulfill its responsibility.

The context serves as the primary interface for the
clients.

 14

Handling state changes

All state related behavior is encapsulated in the state
object.

This avoids complicated conditionals, and state
variables.

State changes can be decided by the context, or by
the state classes themselves.

 15

Consequences

It localizes state specific behavior, and transition
logic between states

State transitions are explicit.

State objects can be shared.

 16

Visitor

Intent: Represent an operation to be performed on
the elements of an object structure. You can define
new operations without changing the classes of the
elements on which they operate.

Motivation: When trying to operate over elements of
a Composite structure. If you need to support many
operations, that differ depending on the concrete
node type.

 17

 18

What if I want to add extra operations to this structure?

 18

Visitor

Adding operations to the Composite classes can
violate SRP; suddenly the classes are doing a lot
more work.

If adding operations is common, changing the
classes breaks OCP.

 19

Visitor
Can we add operations, simply by adding a new
class?

 20

Visitor
Can we add operations, simply by adding a new
class?

 20

 21

Using visitor

A client that uses the Visitor pattern must create a
ConcreteVisitor (e.g. DiskUsageVisitor) and
traverse the object structure, visiting each node.

When an element is visited, it calls the visit
operation that corresponds to its class, and passes
itself as an argument.

 22

public class ConcVisitor extends Visitor {
public void visit(File f) {…}
public void visit(Folder f) {…}
public void visit(RemoteFile f) {…}
}

FileSystemElement el = …;
Visitor v = new ConcVisitor();
el.accept(v);
// get the results from the visitor

 23

public class ConcVisitor extends Visitor {
public void visit(File f) {…}
public void visit(Folder f) {…}
public void visit(RemoteFile f) {…}
}

FileSystemElement el = …;
Visitor v = new ConcVisitor();
el.accept(v);
// get the results from the visitor

 23

The client must implement a
Visitor class for the operation
they wish to perform

public class ConcVisitor extends Visitor {
public void visit(File f) {…}
public void visit(Folder f) {…}
public void visit(RemoteFile f) {…}
}

FileSystemElement el = …;
Visitor v = new ConcVisitor();
el.accept(v);
// get the results from the visitor

 23

Call accept on the root of
your object structure.

public class ConcVisitor extends Visitor {
public void visit(File f) {…}
public void visit(Folder f) {…}
public void visit(RemoteFile f) {…}
}

FileSystemElement el = …;
Visitor v = new ConcVisitor();
el.accept(v);
// get the results from the visitor

 23

public class File extends FSE {
public void accept(Visitor v) {
v.visit(this);
}
}

 24

public class Folder extends FSE {
 List<FSE> children;
public void accept(Visitor v) {
for (FSE child : children){
child.accept(v);

}
v.visit(this);
}

public class File extends FSE {
public void accept(Visitor v) {
v.visit(this);
}
}

 24

public class Folder extends FSE {
 List<FSE> children;
public void accept(Visitor v) {
for (FSE child : children){
child.accept(v);

}
v.visit(this);
}

Each element passes itself to
the visitor. Polymorphism will
guarantee that the right
method is called.

public class File extends FSE {
public void accept(Visitor v) {
v.visit(this);
}
}

 24

public class Folder extends FSE {
 List<FSE> children;
public void accept(Visitor v) {
for (FSE child : children){
child.accept(v);

}
v.visit(this);
}

For composite elements, you
need to make sure that each
child gets to accept the
visitor.

public class File extends FSE {
public void accept(Visitor v) {
v.visit(this);
}
}

 24

public class Folder extends FSE {
 List<FSE> children;
public void accept(Visitor v) {
for (FSE child : children){
child.accept(v);

}
v.visit(this);
}

Consequences

 25

Consequences

Visitor makes adding new operations easy.

Visitor makes adding new elements hard.

Visitors can accumulate state. You don't need to
pass it along through method call, or have fields or
global variables to keep track of it

Visitor breaks encapsulation.

 25

Closing remarks

Design patterns form a vocabulary

Do you need to use all of them?

Don't use design patterns just because you can. Use
them when you have a specific problem to solve.

 26

