
Software Architecture
Thursday, November 15

 1

Design Patterns

A general, reusable solution to a commonly occurring
problem in a given context

Often have best practices associated with them

 2

Architectural Patterns

Architectural Patterns are the fundamental structural
organization for software systems.

 3

What is Software
Architecture?

 4

Architecture: shows pieces of a system & their
relationships

Component: self-contained piece of a system, with
clearly-defined interfaces and structure

Connector: a linkage between components via an
interface

Ideal vs. Real Architecture

 5

 6

4+1 Architectural View

Logical View: concerned with the functionality the
system provides to end users.

Process View: Focuses on the runtime behavior of the
system. This includes the processes, and their
communication

Development View: This is the system from the
perspective of the developer. It has to deal with the
management of the project, maintenance etc;

Physical View: How the system is deployed on actual
physical hardware

 6

4+1 Architectural View

Architectural Styles

 7

Architectural Styles in
Software

An architectural style defines a family of systems in
terms of a pattern of structural organization. More

specifically, an architectural style defines a
vocabulary of components and connector types, and

a set of constraints on how they can be combined.
— Shaw and Garlan

Thesis template vs.

Book chapter vs.

Novel vs. …

 8

Architectural Styles
The Monolith

Client and Server

Micro-services

REST

MVC

Layered

Event-driven

Pipe and Filter

 9

The Monolith

A single-tier software application.

All components are combined into a single
application.

Many projects begin this way.

 10

Advantages &
Disadvantages

 11

Advantages:

Easy to deploy and test

Easy to develop

Disadvantages:

Reliability

Scalability

Maintenance

Advantages &
Disadvantages

 11

Client-server Architecture

 12

Client-server Architecture
A client-server architecture distributes functionality of
the system into services.

 12

Client-server Architecture
A client-server architecture distributes functionality of
the system into services.

Each service potentially delivered from a separate
server.

 12

Client-server Architecture
A client-server architecture distributes functionality of
the system into services.

Each service potentially delivered from a separate
server.

Clients use these service and access the server
through the Internet.

 12

Client-server Architecture
A client-server architecture distributes functionality of
the system into services.

Each service potentially delivered from a separate
server.

Clients use these service and access the server
through the Internet.

Static structure and not the run-time organization.

 12

Film and picture library

 13

Client-server Architecture

 14

Advantages

Servers distributed across a network

Makes effective use of networked systems. May require cheaper hardware

Easy to add new servers or upgrade existing servers

Disadvantages

Each service/server is single point of failure (susceptible to DOS attacks)

Performance depends on the network as well as the system

May require a central registry of names and services — it may be hard to find out
what servers and services are available

Data interchange may be inefficient

For Amazon

How would the client server architecture look like?

What components would reside in the client? In the
server?

 15

Micro-service architecture
The extreme generalization of Client-Server

Instead of monolithic systems one has many concise
services

A micro-service is a “loosely coupled, reusable
software component, which can be distributed.”

Services use message based communication

Service discovery becomes a challenge

 16

Advantages &
Disadvantages

Advantages:

Good reliability

High scalability

Disadvantages:

Difficult testing

Deployment is harder

More difficult maintenance (across service boundaries)

 17

RESTful Architecture
Inspired from the architecture of the largest
distributed application ever: The Web

Stateless requests

Every resource has an individual URI

Uniform interface for all resources (GET, POST, PUT,
DELETE)

The structure of a response is not specified

 18https://restfulapi.net/

3-tier architecture

A client server architecture, where the functional
process logic (business logic), data persistence
(data access, storage management) and user
interfaces are developed a 3 separate modules.

 19

Presentation Layer: sends content to the browser/
user. You might use HTML/CSS, React, Angular etc.

Application Layer: process the business logic of the
application; You might use Java, C#, Python etc.

Data Access Layer: a database management
system that provides access to the data: MySQL,
Postgres, MongoDB, etc.

 20

Advantages &
Disadvantages

Advantages:

Good Scalability

Good Flexibility

High Maintainability

Disadvantages:

More complicated deployment

The business logic is still a monolith.

 21

Layered Architecture
Organizes a system into a subtasks, where each
group of subtasks is at a particular layer of abstraction

Each layer provides a set of services to the layer
“above.”

Normally layers are constrained so elements only see

Other elements in the same layer, or

Elements of the layer below

 22

Generic Layered
Architecture

 23

Online Library System

 24

OSI reference model

 25

Android Architecture

 26

Advantages
Layers can be developed independently (and
incrementally)

Makes reuse easier

Makes individual layers interchangeable (as long as
interface is same)

Layer interactions clearly defined (through interfaces)

When layer interface change, only adjacent layers
affected

 27

Disadvantages

It’s hard to achieve a clean separation

Layers sometimes introduce unnecessary work

Performance can be impacted since each layer
needs to interpret the service request

 28

Event Driven Architecture
In an event-driven architecture components perform
services in reaction to external events generated by
other components

In broadcast models an event is broadcast to all
sub-systems. Any sub-system which can handle the
event may do so.

In interrupt-driven models real-time interrupts are
detected by an interrupt handler and passed to
some other component for processing

 29

Event Driven Architecture

 30

Advantages

Loose coupling

More responsive

Increased reliability

Asynchrony built in

Events distributed leads to timeliness

 31

Disadvantages

Difficult debugging

Maintenance overhead (fewer build time validations)

Different understanding of events can lead to
problems

 32

Pipe and Filter
Depicts Run-time organization of the system. Provides a
structure for systems where each processing component is
discrete and carries out one type of data transformation.
Each step (filter) transforms the data and passes is on to the
next step.

Can be sequential or parallel; single item or batch process

 33

Pipe and Filter

 34

Invoice processing

 35

Advantages

Easy to understand and matches business processes

Filters can be reused/ replaced

Ease of debugging

Can be sequential or concurrent

 36

Disadvantages

Format of data transfer has to be agreed a-priori

Each transformation must parse and serialize in the
agreed form

Cannot reuse functional transformations that use
incompatible data structures

Cannot (directly) share state between filters

 37

Model-View-Controller
Separates information, presentation, and user
interactions

 38

Model

Manages the system data and associated operations
on that data

Contains the Business logic. (application logic and
structure)

 39

View

Defines and manages how the data is presented to
the user

Renders the model

Allows interaction with the user

Passes input to the controller

 40

Controller

Manages user interaction and passes these to the
view and the model

Receives input

Makes appropriate calls to the model

Updates the view

 41

Model-View-Controller

Use when -

there are multiple ways to view and interact with the
data

when future requirements for interaction and
presentation of data are unknown

 42

Advantages

 43

Advantages

Clear separation of concerns

Allows data to change independently of its
representation and vice versa

Multiple presentations to the same model

Single change to model updates all representations

 43

Disadvantages

 44

Disadvantages

Increased complexity, communication

Views & controllers are tightly bound

 44

Common MVC frameworks
Ruby on Rails

Spring Framework for Java

Django for Python

Google Web Toolkit for Java

AngularJS for Javascript

CodeIgniter for php

 45

MVC – student record
viewer

 46

MVC – student record
viewer

 46

Interaction in a (generic)
web-based system

 47

Bare Bones Facebook =
BeaverBook

User profile (name, picture, status)

Wall that contains posts from your friends

Posts have poster’s information, text, and comments

Comments have commenter’s information, text

 48

MVC for BeaverBook

 49

