
Software Development
Lifecycle

Tuesday, November 19th

 1

Hardware wears out

 2

CHAPTER 1 THE PRODUCT

ity is achieved through good design, but the manufacturing phase for hardware can
introduce quality problems that are nonexistent (or easily corrected) for software.
Both activities are dependent on people, but the relationship between people applied
and work accomplished is entirely different (see Chapter 7). Both activities require
the construction of a "product" but the approaches are different.

Software costs are concentrated in engineering. This means that software proj-
ects cannot be managed as if they were manufacturing projects.

2. Software doesn't "wear out."

Figure 1.1 depicts failure rate as a function of time for hardware. The relationship,
often called the "bathtub curve," indicates that hardware exhibits relatively high fail-
ure rates early in its life (these failures are often attributable to design or manufac-
turing defects); defects are corrected and the failure rate drops to a steady-state level
(ideally, quite low) for some period of time. As time passes, however, the failure rate
rises again as hardware components suffer from the cumulative affects of dust, vibra-
tion, abuse, temperature extremes, and many other environmental maladies. Stated
simply, the hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause hardware to
wear out. In theory, therefore, the failure rate curve for software should take the form of
the “idealized curve” shown in Figure 1.2. Undiscovered defects will cause high failure
rates early in the life of a program. However, these are corrected (ideally, without intro-
ducing other errors) and the curve flattens as shown.The idealized curve is a gross over-
simplification of actual failure models (see Chapter 8 for more information) for software.
However, the implication is clear—software doesn't wear out. But it does deteriorate!

This seeming contradiction can best be explained by considering the “actual curve”
shown in Figure 1.2. During its life, software will undergo change (maintenance). As

7

“Wear out”“Infant
mortality”

Time

Fa
ilu

re
 ra

te
FIGURE 1.1
Failure curve
for hardware

Software doesn’t wear
out, but it does
deteriorate.

Failure curve for hardware

Software doesn't wear out

 3

PART ONE THE PRODUCT AND THE PROCESS8

changes are made, it is likely that some new defects will be introduced, causing the
failure rate curve to spike as shown in Figure 1.2. Before the curve can return to the
original steady-state failure rate, another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise—the software is
deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.
When a hardware component wears out, it is replaced by a spare part. There are no
software spare parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable code. There-
fore, software maintenance involves considerably more complexity than hardware
maintenance.

3. Although the industry is moving toward component-based assembly, most
software continues to be custom built.

Consider the manner in which the control hardware for a computer-based product
is designed and built. The design engineer draws a simple schematic of the digital
circuitry, does some fundamental analysis to assure that proper function will be
achieved, and then goes to the shelf where catalogs of digital components exist. Each
integrated circuit (called an IC or a chip) has a part number, a defined and validated
function, a well-defined interface, and a standard set of integration guidelines. After
each component is selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design components
is created. Standard screws and off-the-shelf integrated circuits are only two of thou-
sands of standard components that are used by mechanical and electrical engineers
as they design new systems. The reusable components have been created so that the
engineer can concentrate on the truly innovative elements of a design, that is, the

FIGURE 1.2
Idealized and
actual failure
curves for
software

Increased failure
rate due to side

effects

Time

Fa
ilu

re
 ra

te

Change

Actual curve

Idealized curve

Most software
continues to be
custom built.

Software engineering
methods strive to
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

Software doesn't wear out

 3

PART ONE THE PRODUCT AND THE PROCESS8

changes are made, it is likely that some new defects will be introduced, causing the
failure rate curve to spike as shown in Figure 1.2. Before the curve can return to the
original steady-state failure rate, another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise—the software is
deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.
When a hardware component wears out, it is replaced by a spare part. There are no
software spare parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable code. There-
fore, software maintenance involves considerably more complexity than hardware
maintenance.

3. Although the industry is moving toward component-based assembly, most
software continues to be custom built.

Consider the manner in which the control hardware for a computer-based product
is designed and built. The design engineer draws a simple schematic of the digital
circuitry, does some fundamental analysis to assure that proper function will be
achieved, and then goes to the shelf where catalogs of digital components exist. Each
integrated circuit (called an IC or a chip) has a part number, a defined and validated
function, a well-defined interface, and a standard set of integration guidelines. After
each component is selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design components
is created. Standard screws and off-the-shelf integrated circuits are only two of thou-
sands of standard components that are used by mechanical and electrical engineers
as they design new systems. The reusable components have been created so that the
engineer can concentrate on the truly innovative elements of a design, that is, the

FIGURE 1.2
Idealized and
actual failure
curves for
software

Increased failure
rate due to side

effects

Time

Fa
ilu

re
 ra

te

Change

Actual curve

Idealized curve

Most software
continues to be
custom built.

Software engineering
methods strive to
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

Software doesn't wear out

 3

PART ONE THE PRODUCT AND THE PROCESS8

changes are made, it is likely that some new defects will be introduced, causing the
failure rate curve to spike as shown in Figure 1.2. Before the curve can return to the
original steady-state failure rate, another change is requested, causing the curve to
spike again. Slowly, the minimum failure rate level begins to rise—the software is
deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and software.
When a hardware component wears out, it is replaced by a spare part. There are no
software spare parts. Every software failure indicates an error in design or in the
process through which design was translated into machine executable code. There-
fore, software maintenance involves considerably more complexity than hardware
maintenance.

3. Although the industry is moving toward component-based assembly, most
software continues to be custom built.

Consider the manner in which the control hardware for a computer-based product
is designed and built. The design engineer draws a simple schematic of the digital
circuitry, does some fundamental analysis to assure that proper function will be
achieved, and then goes to the shelf where catalogs of digital components exist. Each
integrated circuit (called an IC or a chip) has a part number, a defined and validated
function, a well-defined interface, and a standard set of integration guidelines. After
each component is selected, it can be ordered off the shelf.

As an engineering discipline evolves, a collection of standard design components
is created. Standard screws and off-the-shelf integrated circuits are only two of thou-
sands of standard components that are used by mechanical and electrical engineers
as they design new systems. The reusable components have been created so that the
engineer can concentrate on the truly innovative elements of a design, that is, the

FIGURE 1.2
Idealized and
actual failure
curves for
software

Increased failure
rate due to side

effects

Time

Fa
ilu

re
 ra

te

Change

Actual curve

Idealized curve

Most software
continues to be
custom built.

Software engineering
methods strive to
reduce the magnitude
of the spikes and the
slope of the actual
curve in Figure 1.2.

Software deteriorates

SDLC – Software
Development Lifecycle

 4
https://www.tutorialspoint.com/sdlc/

sdlc_overview.htm

Big Bang Model

Develop code

Understand requirements as you go ahead

Basically, no planning, defining, or designing

 5

Waterfall

 6

Waterfall

 6

Pros

 7

Pros

Well documented requirements & documentation

Easy to manage phases across teams

 7

Cons

 8

Cons

Rigid phases

No working software until late stage

Not much reflection or revision

Big Bang Integration at the end

 8

The impact of change
(for waterfall)

 9

PART ONE THE PRODUCT AND THE PROCESS14

Practitioner's myths. Myths that are still believed by software practitioners have
been fostered by 50 years of programming culture. During the early days of software,
programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.
Reality: Someone once said that "the sooner you begin 'writing code', the longer
it'll take you to get done." Industry data ([LIE80], [JON91], [PUT97]) indicate that
between 60 and 80 percent of all effort expended on software will be expended after
it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.
Reality: One of the most effective software quality assurance mechanisms can be
applied from the inception of a project—the formal technical review. Software reviews
(described in Chapter 8) are a "quality filter" that have been found to be more effec-
tive than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working
program.
Reality: A working program is only one part of a software configuration that includes
many elements. Documentation provides a foundation for successful engineering
and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary doc-
umentation and will invariably slow us down.
Reality: Software engineering is not about creating documents. It is about creat-
ing quality. Better quality leads to reduced rework. And reduced rework results in
faster delivery times.

Many software professionals recognize the fallacy of the myths just described. Regret-
tably, habitual attitudes and methods foster poor management and technical practices,
even when reality dictates a better approach. Recognition of software realities is the
first step toward formulation of practical solutions for software engineering.

1×

Definition

1.5–6×

Development

60–100×

After release

C
os

t t
o

ch
an

ge

FIGURE 1.3
The impact of
change

Whenever you think,
we don’t have time for
software engineering
discipline, ask yourself:
“Will we have time to
do it over again?”

Spiral model

 10

CHAPTER 2 THE PROCESS

• Customer evaluation—tasks required to obtain customer feedback based
on evaluation of the software representations created during the engineering
stage and implemented during the installation stage.

Each of the regions is populated by a set of work tasks, called a task set, that are
adapted to the characteristics of the project to be undertaken. For small projects, the
number of work tasks and their formality is low. For larger, more critical projects,
each task region contains more work tasks that are defined to achieve a higher level
of formality. In all cases, the umbrella activities (e.g., software configuration man-
agement and software quality assurance) noted in Section 2.2 are applied.

As this evolutionary process begins, the software engineering team moves around
the spiral in a clockwise direction, beginning at the center. The first circuit around
the spiral might result in the development of a product specification; subsequent
passes around the spiral might be used to develop a prototype and then progressively
more sophisticated versions of the software. Each pass through the planning region
results in adjustments to the project plan. Cost and schedule are adjusted based on
feedback derived from customer evaluation. In addition, the project manager adjusts
the planned number of iterations required to complete the software.

Unlike classical process models that end when software is delivered, the spiral
model can be adapted to apply throughout the life of the computer software. An alter-
native view of the spiral model can be considered by examining the project entry point
axis, also shown in Figure 2.8. Each cube placed along the axis can be used to rep-
resent the starting point for different types of projects. A “concept development

37

Construction & release
Customer
evaluation

Risk analysis
Planning

Customer
communication

Engineering

Project entry
point axis

Product maintenance projects

Product enhancement projects

New product development projects

Concept development projects

FIGURE 2.8
A typical spiral
model

Adaptable process model

What is a
“task set”??

Pros

 11

Pros

Used for medium – high risk projects

Complex and unclear requirements that need
evaluation

Early involvement with system development & users

 11

Cons

 12

Cons

Management & process is complex

Large number of cycles require lots of documentation

When is end of cycle not always clear

 12

Iterative model

 13

Pros

 14

Pros

Major requirements (and risks) are identified upfront

Working model at early stage

Parallel development can be planned

Suited for large, mission critical systems

 14

Cons

 15

Cons

Defining iterations may require definition of complete
system

Not all requirements is gathered upfront; changing
requirements still expensive

Increased pressure on user engagement

 15

Agile

 16

Agile Manifesto
Individuals and interactions over processes and
tools

Working software over comprehensive
documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

 17

Pros

 18

Pros

Manage changing requirements

Minimal planning or documentation

Promotes team work & collaboration

Quickly change directions

 18

Cons

 19

Cons

Overall plan/agile manager

Can't handle complex dependencies

Iterations determine scope of project

Heavy reliance on personnel (minimal documentation,
newcomer onboarding, customer interaction)

 19

 20

Agile methods
Scrum

Kanban

Extreme Programming

DSDM (Dynamic Software Development Method)

Feature Driven Development (FDD)

Behavior Driven Development (BDD)

 21
http://www.guru99.com/agile-scrum-

extreme-testing.html

Extreme Programming

One the first agile methods

TDD, continuous integration, refactoring were
originally introduced by XP.

 22

XP Practices
Pair Programming
TDD
Continuous Integration
Refactoring
Small Releases
Coding Standards
Collective Code Ownership
Simple Design
Sustainable Pace

 23

Scrum

 24

Scrum terminology
Product Backlog: An ordered list of everything that is
known to be needed in the product. A Product Backlog is
never complete.

Increment: The sum of all the Product Backlog items
completed during a Sprint plus the value of the increments
of all previous Sprints. At the end of a Sprint, the new
Increment must be “Done.”

Sprint Backlog: the set of Product Backlog items selected
for the Sprint, plus a plan for delivering the product
Increment and realizing the Sprint Goal

 25

Scrum terminology

Story Points: A unit of measure for expressing an
estimate of the overall effort that will be required to
fully implement a product backlog item or any other
piece of work.

Velocity: The sum of all the story points that are
"Done" at the end of the Sprint.

 26

 27

 28

Scrum roles
Product Owner: is responsible for maximizing the
value of the product resulting from the work of the
Development Team.

The sole person responsible for managing the
Product Backlog

Clearly expressing Product Backlog items.

Ordering the items in the Product Backlog

 29

Scrum Roles
Development Team: consists of professionals who
do the work of delivering a potentially releasable
Increment of “Done” product at the end of each
Sprint.

They are self-organizing. No one tells the
Development Team how to turn Product Backlog into
Increments of potentially releasable functionality.

 30

Scrum Roles
Scrum Master: responsible for promoting and
supporting Scrum.

Helping the team to reach consensus for what can
be achieved during a specific period of time.

Removing obstacles that are impeding the team's
progress.

Protecting the team from outside distractions.

 31

Scrum Activities
Sprint planning:

What can be delivered in the Increment resulting from
the upcoming Sprint?

How will the work needed to deliver the Increment be
achieved?

Time-boxed to a maximum of eight hours for a one-
month Sprint.

 32

Scrum Activities

Daily Scrum: a 15-minute time-boxed event for
the Development Team to synchronize activities and
create a plan for the next 24 hours.

Sprint Review: held at the end of the Sprint to
inspect the Increment and adapt the Product Backlog
if needed.

 33

Scrum Activities
Sprint Retrospective: an opportunity for the Scrum
Team to inspect itself and create a plan for
improvements to be enacted during the next Sprint.

The team discusses:

What went well in the Sprint

What could be improved

What will we commit to improve in the next Sprint

 34

Kanban

Work flows continuously through the system, instead
of being organized into distinct timeboxes.

Work items are represented visually on a kanban
board, allowing team members to see the state of
every piece of work at any time.

 35

 36

Work in Progress

In Kanban, Work in Progress is limited.

This allows the team to develop a flow, without
loosing time switching between different tasks

The board allows the team to identify blockers, and
clear them out quickly.

 37

When to choose a particular
kind of process

When to choose a particular
kind of process

Waterfall is often a good choice for small systems
whose requirements can be fully understood before
any design or coding.

When to choose a particular
kind of process

Waterfall is often a good choice for small systems
whose requirements can be fully understood before
any design or coding.

Spiral is often a good choice for larger systems with
vague requirements and many alternatives for
designing and coding.

When to choose a particular
kind of process

Waterfall is often a good choice for small systems
whose requirements can be fully understood before
any design or coding.

Spiral is often a good choice for larger systems with
vague requirements and many alternatives for
designing and coding.

Agile is often a good choice for systems where you
can rapidly create something very small but useful,
and then expand from there.

