
Software Quality
Thursday, November 29

 1

Software Quality - why it
matters

 2

vs.

Measurements
Software is measured by quality of the implementation

 3

Measurements
Software is measured by quality of the implementation

 3

Sufficiency

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability measure of the ability to use the component as scope increases

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability measure of the ability to use the component as scope increases

Reusability

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability measure of the ability to use the component as scope increases

Reusability how usable a component is in related applications without modification

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability measure of the ability to use the component as scope increases

Reusability how usable a component is in related applications without modification

Security

Measurements
Software is measured by quality of the implementation

 3

Sufficiency how well a component satisfies design specifications

Robustness how well the component will recover from anomalous events

Reliability the average amount of time between failures

Flexibility how adaptable to ‘reasonable’ changes a component is

Efficiency how well a component satisfies speed or storage requirements

Scalability measure of the ability to use the component as scope increases

Reusability how usable a component is in related applications without modification

Security how resilient a component is to an attack

Achieving Dependability
Avoid the introduction of accidental errors when developing
the system

Design Verification and Validation processes that are
effective at discovering residual defects in the system

Configure the system correctly for its operating environment

Include recovery mechanisms to assist in restoring normal
operation after a failure.

Develop process to support implementation quality

 4

Achieving Dependability
Testing!

Write Unit Tests for each feature

Run all the tests after each change

Code reviews!

 "Given enough eyeballs, all bugs are shallow."
Linus' Law

 5

Availability
Availability - the probability that a system at a point in time will be operational

Availability is measured in terms of “9s”:

90% availability (“one nine”) - 36.5 days of down time per year

99% availability (“two nines”) - 3.65 days of down time per year

99.9% availability (“three nines”) - 8.76 hours of down time per year

99.99% availability (“four nines”) - 52.56 minutes of down time per year

99.999% availability (“five nines”) - 5.25 minutes of down time per year

99.9999% availability (“six nines”) - 31.5 seconds of downtime per year

 7

Reliability
The probability of failure free operation over a specified time
period, in a given environment, for a given purpose.

Measured as a rate of failure per some number of inputs:

2 errors for every 1,000 inputs = a system that is 99.8%
reliable (or has a failure rate of 0.002).

Do all faults affect reliability?

What does it mean for you – when writing test cases?

 8

Availability/ Reliability
As availability or reliability requirements increases so does the
cost; the curve grows exponentially

Important to consider both properties

A system that is always on, but does not have sufficient (correct)
results

A system that is up half the times, but always has correct results

Evaluate your design, requirements, tests, and know the potential
faults

What about your project?

 9

Safety

Safety critical: essential that the operation of the
system is always safe

Examples: control system for a nuclear reactor,
navigation systems in planes, monitoring sensors for
security systems, heart monitors, etc.

 10

Safety / Reliability

 11

Safety / Reliability
Can a reliable system be unsafe?

 11

Safety / Reliability
Can a reliable system be unsafe?

faults can be hidden for long periods of time and have
catastrophic results even low occurrence rate

 11

Safety / Reliability
Can a reliable system be unsafe?

faults can be hidden for long periods of time and have
catastrophic results even low occurrence rate

system specification can fail to account for specific situations
that lead to serious errors in an otherwise reliable system

 11

Safety / Reliability
Can a reliable system be unsafe?

faults can be hidden for long periods of time and have
catastrophic results even low occurrence rate

system specification can fail to account for specific situations
that lead to serious errors in an otherwise reliable system

hardware failure or degradation can create anomalous states
that software can interpret incorrectly

 11

Safety / Reliability
Can a reliable system be unsafe?

faults can be hidden for long periods of time and have
catastrophic results even low occurrence rate

system specification can fail to account for specific situations
that lead to serious errors in an otherwise reliable system

hardware failure or degradation can create anomalous states
that software can interpret incorrectly

users can generate inputs that individually are correct but when
combined with state from other errors introduce anomalous data
states

 11

Safety / Reliability
Can a reliable system be unsafe?

faults can be hidden for long periods of time and have
catastrophic results even low occurrence rate

system specification can fail to account for specific situations
that lead to serious errors in an otherwise reliable system

hardware failure or degradation can create anomalous states
that software can interpret incorrectly

users can generate inputs that individually are correct but when
combined with state from other errors introduce anomalous data
states

 11

Designing safe software requires
significant verification effort

Scalability

 12

Scalability

 12

Does it scale?

Scalability

 12

Does it scale?

Does it matter?

Scalability

 12

Does it scale?

Does it matter?

Uneven loads

Scalability

 12

Does it scale?

Does it matter?

Uneven loads

Verified trend-line

Security

Ability of a system to protect itself from intrusion or
attack leading to loss of data or services

More commonly considered than safety

Web-based or networked systems are more
vulnerable due to the exposure of the system to
many users;

 13

Security
Three mechanisms

threats to confidentiality of data

threats to the integrity of data

threats to the availability of the system

 14

Security
Three mechanisms

threats to confidentiality of data

threats to the integrity of data

threats to the availability of the system

 14

Design and limit how the system exposes data and
maintains state

Security Terms
Asset - something of “value” that needs to be protected. Can be
software or data;

Exposure - possible loss or harm realized from a security breach;

Vulnerability - a weakness in software than can be exploited to
cause loss or harm;

Threat - a circumstance that has the potential to cause loss or
harm;

Attack - exploiting a vulnerability in a system;

Control - a protective measure that reduces a vulnerability.

 15

Example

 16

Identify the assets, exposures, vulnerabilities,
and possible attacks, threats, and controls

 17

 17

Asset

 17

Asset the grade database and its data

 17

Asset the grade database and its data

Exposure

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack the user could append sql strings to their input

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack the user could append sql strings to their input

Threat

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack the user could append sql strings to their input

Threat
 the student_id parameter is “002323; select * from Grades” then
the second SQL statement could be executed, returning all grades. Any
other student ID could be provided

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack the user could append sql strings to their input

Threat
 the student_id parameter is “002323; select * from Grades” then
the second SQL statement could be executed, returning all grades. Any
other student ID could be provided

Control

 17

Asset the grade database and its data

Exposure data could be obtained or manipulated by an unauthorized user

Vulnerability user input is passed unchecked to the database,

Attack the user could append sql strings to their input

Threat
 the student_id parameter is “002323; select * from Grades” then
the second SQL statement could be executed, returning all grades. Any
other student ID could be provided

Control check for values before accepting the query or returning results

Sanitize your inputs!

 18

The weakest link ?

 19

 20

What we covered
Java & OO

OO Design Basics

Design Patterns

Software Architecture

Unit tests

Code smells & Refactorings

 21

What we covered
UI Design & Evaluation

Paper Prototypes

CRC Cards

UML Diagrams

SLDC

Project Management

 22

We used

Java

Continuous Integration

Unit tests

HTML & CSS

Javascript

 23

