
Java & OO basics
Tuesday, October 2

 1

Announcements

Sprint 0 grades have been posted

Contact your team members

 2

Java
Object oriented, statically typed, imperative language

With a few functional constructs

Syntax influenced heavily by C++

Compiles to bytecode, that is then executed by a
virtual machine (JVM)

Platform independent (as long as you have a JVM)

 3

Decomposing programs

In many languages (e.g. C), programs are
decomposed into functions, that operate on common
data structures.

This is called functional decomposition

 4

Functional decomposition

Pros:

Easy to add new functions or features

Cons:

Modern systems perform more than one function

Systems evolve, their functions change

 5

Object Oriented
Decomposition

A system is decomposed according to the objects a
system is supposed to manipulate.

Objects communicate through well defined
interfaces.

 6

OO Concepts

There are 3 core concept at the heart of OO:

1. Encapsulation

2. Inheritance

3. Polymorphism

 7

Encapsulation

Group together data (variables) and methods
(functions) in one unit.

Also, all variables should be hidden (private) and
only accessible by the methods in the class.

 8

Classes

A class is a template for creating objects.

Example: a car

it has two attributes: brand name and fuel level

and two methods: drive and refuel

 9

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 10

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 10

These an attribute of the class.

In Java, attributes are known as fields.

The private keyword specifies that the
attribute is only accessible by the
method of that class.

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 11

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 11

This is the constructor.

It is used for creating objects, with the
new keyword

The this keyword disambiguates
between the field and parameter.

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 12

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 12

These are methods.

Methods are operations that
this object can perform

public class Car {

 private String brandName;
 private double fuelLevel;

 public Car(String brandName) {
 this.brandName = brandName;
 fuelLevel = 10;
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 }

 public void refuel() {
 fuelLevel = 10;
 }
}

 12

public - anybody can access (same as C++)

protected - only code in subclasses can access
(same as C++) & code in the same package

default (package) - only code in the same package
can access

private - only code in the same class can access
(same as C++)

Access modifiers

 13

Information hiding
The private keyword is used to keep all data hidden

But what if I want to access, or to change, the value
outside of a class?

We define special methods, getters and setters

Only define getters and setters if you need them!

 14

public double getFuelLevel() {
 return fuelLevel;
}

public void setBrandName(String brandName) {
 this.brandName = brandName;
}

 15

Creating objects

Objects are created with the new keyword

Car car = new Car("Ford");

This invokes the constructor with the right
parameters.

 16

Type inference

 17

You omit the variable type and write

var car = new Car("Ford");

The compiler will infer that car is of type Car

Method parameters must have a type

public Car(val brandName){…} will not
compile

Inheritance

Also known as subclassing or subtyping

Classes can inherit fields and methods from other
classes with the extends keyword.

We want to model a Sedan, that has all the fields and
methods of a car.

Defines a "is-a" relationship between classes.

 18

public class Sedan extends Car {

 private int noOfDoors = 4;

 public Sedan(String name) {
 super(name);
 }
}

 19

public class Sedan extends Car {

 private int noOfDoors = 4;

 public Sedan(String name) {
 super(name);
 }
}

 19

The class declaration
now contains the
extends declaration

public class Sedan extends Car {

 private int noOfDoors = 4;

 public Sedan(String name) {
 super(name);
 }
}

 20

public Car(String brandName) {
 super(brandName);
}

public class Sedan extends Car {

 private int noOfDoors = 4;

 public Sedan(String name) {
 super(name);
 }
}

 20

The constructor now contains the
super keyword. This passes the
parameters to Car's
constructor.

public Car(String brandName) {
 super(brandName);
}

Inheritance

Sedan now inherits Car's attributes and method:

Sedan s = new Sedan("Ford");
s.drive();

 21

Inheritance

Java only supports single inheritance (you can only
extend one class)

All classes, by default, extend Object.

 22

Polymorphism

Polymorphism means taking different forms

In Java, this refers to the fact that a subclass can
always be used instead of a parent class.

e.g. You can use a Sedan object, even if a Car is
required:

Car c = new Sedan("Ford");

 23

Class hierarchies

We want to model a boat. It has a brand name, a fuel
level, but it cannot drive.

We can create an abstract class, Vehicle, from
which we can extend for Car and Boat

 24

public class Vehicle {

 private String brandName;
 protected double fuelLevel;

 public Vehicle(String brandName) {
 fuelLevel = 10;
 this.brandName = brandName;
 }

 public void refuel() {
 fuelLevel = 10;
 }

 public double getFuelLevel() {
 return fuelLevel;
 }

 public void setBrandName(String brandName) {
 this.brandName = brandName;
 }
}

 25

public class Vehicle {

 private String brandName;
 protected double fuelLevel;

 public Vehicle(String brandName) {
 fuelLevel = 10;
 this.brandName = brandName;
 }

 public void refuel() {
 fuelLevel = 10;
 }

 public double getFuelLevel() {
 return fuelLevel;
 }

 public void setBrandName(String brandName) {
 this.brandName = brandName;
 }
}

 25

The protected keyword allows
subclasses to access this field

public class Vehicle {

 private String brandName;
 protected double fuelLevel;

 public Vehicle(String brandName) {
 fuelLevel = 10;
 this.brandName = brandName;
 }

 public void refuel() {
 fuelLevel = 10;
 }

 public double getFuelLevel() {
 return fuelLevel;
 }

 public void setBrandName(String brandName) {
 this.brandName = brandName;
 }
}

 25

We extracted all the common
functionality between Car and
Boat (the name and the fuel)
into it's own class

The protected keyword allows
subclasses to access this field

public class Car extends Vehicle {

 public Car(String brandName) {
 super(brandName);
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 // some other code that "drives" the car
 }

}

 26

public class Car extends Vehicle {

 public Car(String brandName) {
 super(brandName);
 }

 public void drive() {
 fuelLevel = fuelLevel - 1;
 // some other code that "drives" the car
 }

}

 26

We access the protected
field in Vehicle

public class Boat extends Vehicle {

 public Boat(String name) {
 super(name);
 }

 public void sail() {
 fuelLevel = fuelLevel - 1;
 // some code relating to sailing
 }
}

 27

public class Boat extends Vehicle {

 public Boat(String name) {
 super(name);
 }

 public void sail() {
 fuelLevel = fuelLevel - 1;
 // some code relating to sailing
 }
}

 27

The class Boat now has to
deal only with Boat
specific stuff

Abstract Classes & Methods
You can define abstract classes, that cannot be
instantiated

public abstract class Vehicle {…}

val v = new Vehicle(); will not compile

Abstract methods have no implementation, and can
only be declared in abstract classes

public abstract void drive();

 28

Interfaces
An interface is abstract type, like an abstract class,
that only contains method signatures and fields
(static of final).

public interface Driveable {
 public void drive();
}

Like abstract classes, you can not instantiate
interfaces.

 29

Interfaces

A class can extend an interface using the implements
keyword

public class Car implements Drivable {
 …
}

A class can implement more than one interface

 30

What's the advantage?

It allows us to write code that is more generic
public void refuel(Vehicle v) {
 v.refuel();
}

This will work with any vehicle.

It keeps the code clean, and easy to maintain.

 31

What's the advantage?

It allows us to write code that is more generic
public void refuel(Vehicle v) {
 v.refuel();
}

This will work with any vehicle.

It keeps the code clean, and easy to maintain.

 31

Dynamic
polymorphism

Method overloading

In Java, multiple methods can have the same name,
as long they have different parameters (type and/or
numbers)
public void refuel() {
 fuelLevel = 10;
}

public void refuel(int x) {
 fuelLevel = x;
}

 32

Method overloading

In Java, multiple methods can have the same name,
as long they have different parameters (type and/or
numbers)
public void refuel() {
 fuelLevel = 10;
}

public void refuel(int x) {
 fuelLevel = x;
}

 32

Static
polymorphism

