
Object Oriented
Design

Thursday, October 4

 1

Announcements

 2

S.O.L.I.D. Design Principles

Single Responsibility Principle (SRP)

Open-Closed Principle (OCP)

Liskov Substitution Principle (LSP)

Interface Segregation Principle (ISP)

Dependency Inversion Principle (DIP)

 3

Single Responsibility
Principle

A class should have only one responsibility.

Responsibility = Reason for change

A class should have only one reason to change.

 4

Single Responsibility
Principle

 5

public class Person {
public void save(){…}
public double calculateHours(){…}
public double calculateSalary(){…}
public double calculateTax(){…}
}

 6

The person class has at least 3 reasons to change:

If the database schema changes

If the salary calculation rules change

If the tax code changes

The solution

Extract separate responsibilities into their own
classes.

Only when the changes occur.

 7

public class Person {
public void save();
public double calculateHours(){…}
public double calculateSalary(){…}
public double
calculateTax(TaxCalculator c){…}
}

public class TaxCalculator {
public double calculateTax(…){ … }
}

 8

Open Closed Principle

Software entities (classes) should be closed for
modification, but open for extension.

 9

Open Closed Principle

Closed for modification: the source code doesn't
need to be modified when requirements change

Open for extension: You can easily add new
features, change the behavior to meet new
requirements

 10

public class Shape {
private String shape;
public void draw() {
if (shape.equals("circle")) {
… // draw a circle
} else if (shape.equals("square")) {
 … // draw a square
}
}
}

 11

What if I want to
add a triangle?

public abstract class Shape(){
public abstract void draw();
}

public class Circle extends Shape { … }

public class Square extends Shape { … }

public class Triangle extends Shape {…}

 12

Known uses

Chrome extensions

Any tool that allows plugins (VS Code, Atom, IDEA,
Eclipse)

Operating systems drivers

 13

Strategic closure
Can a system be 100% closed?

No.

Closure must be strategic.

Places in the code that change often are generally
good candidates.

 14

public class NotificationSender {
public send(User user, String text) {
val message = new EmailMessage(user);
message(text);
}
}

 15

What if I want to send a text
message?

public class NotificationSender {
public send(String text, EmailMessage
message) {
message.send(text);
}
}

notificationSender.send(new
EmailMessage(bob), "Hello");

 16

Will this work?

 17

public class NotificationSender {
public send(String text, Message
message) {
message.send(text);
}
}

public abstract class Message {
public Message(User user) { … }
public abstract void send(String text);
}

 18

public class EmailMessage extends
Message {
public send(String text) { … }
}

public class TextMessage extends
Message {
public send(String text) { … }
}

notificationSender.send(new
EmailMessage(bob), "Hello");
notificationSender.send(new
TextMessage(bob), "Hello");

Dependency Inversion
Principle

High level modules (classes) should not depend on
low level modules (classes). Both should depend on
abstractions.

Abstractions should not depend on details. Details
should depend on abstractions.

 19

Dependency Inversion
Principle

 20

NotificationSender EmailMessage

Dependency Inversion
Principle

 21

NotificationSender Message

EmailMessageTextMessage

Liskov Substitution Principle

Named after Barbara Liskov, who defined it

She was the Turing Award in 2008 for her work in the
design of programming languages.

 22

Liskov Substitution Principle

 23

Liskov Substitution Principle

Functions that use references to base classes must
be able to use objects of derived classes
(subclasses) without knowing it.

You should always be able to substitute a derived
class for its base class.

 24

public abstract class Bird{
public abstract void fly();
}

public class Pigeon extends Bird {
public void fly() {
// fly like a pigeon
}
}

public class Duck extends Bird {
public void fly() {
// fly like a duck
}
}

 25

public class Penguin extends Bird {
public void fly() {
// fly like a penguin
}
}

Penguins don't fly? What are our options:

1. leave the method empty

2. throw an exception

3. A penguin isn't a bird

 26

The contract

A bird must fly.

When we call Bird.fly(); we expect something
to happen; e.g. the bird's location changed, and it's
at a higher altitude

If nothing happens, I've broken the contract.

 27

The contract

Each class (abstract or not), or interface, defines a
contract.

Bertrand Meyer's design by contract expresses
this in a formal way, with pre-, post-conditions and
invariants.

Every sub-class must respect the contract

 28

The contract
Why is breaking the contract bad?

Everywhere I use a bird, I must check, to see if's a
Penguin, and act accordingly.

if (bird instanceof Penguin) {
//do penguin stuff
}

This breaks OCP, among others.

 29

The solution
public abstract class FlightlessBird {
public abstract void waddle();

}

public abstract class Bird extends FlightlessBird {
public abstract void fly();

}

public class Pigeon extends Bird {
public void fly() { … }

}

public class Penguin extends FlightlessBird {
public void waddle() { … }

}

 30

Interface Segregation
Principle

Clients should not be forced to depend on methods
that they do not use.

This applies to abstract classes and interfaces

 31

public interface CoffeeMachine {
public void addGroundCoffee(
GroundCoffee c);
public Drink brewFilterCoffee();
}

public class MrCoffee
implements CoffeeMachine {
public void addGroundCoffee(
GroundCoffee c){ … }
public Drink brewFilterCoffee(){ … }
}

 32

public interface CoffeeMachine {
public void addGroundCoffee(
GroundCoffee c);
public Drink brewFilterCoffee();
public Drink brewEspresso();
}

public class FancyEspressoMachine
implements CoffeeMachine {
public void addGroundCoffee(
GroundCoffee c) { … }
public Drink brewFilterCoffee() { … }
public Drink brewEspresso() { … }
}

 33

The problem

The CoffeeMachine interface is too broad

Implementing classes for forced to no-op at least
some of the methods.

This breaks the contract, and makes things
ambiguous.

 34

The solution
public interface CoffeeMachine {
public void addGroundCoffee(
GroundCoffee c);

public Drink brewFilterCoffee();
public Drink brewEspresso();

}

public interface FilterCoffeeMachine
extends CoffeeMachine {
public Drink brewFilterCoffee();

}

public interface EspressoCoffeeMachine
extends CoffeeMachine {
public Drink brewEspresso();

}

 35

The solution
public class MrCoffee
implements FilterCoffeeMachine {
public void addGroundCoffee(
GroundCoffee c){ … }
public Drink brewFilterCoffee(){ … }
}

public class FancyEspressoMachine
implements EspressoMachine {
public Drink brewEspresso(){ … }
}

 36

The result

Small, composable interfaces

Each interface does one thing

Complex objects will implement multiple interfaces

 37

Single Responsibility Principle (SRP)

Open-Closed Principle (OCP)

Liskov Substitution Principle (LSP)

Interface Segregation Principle (ISP)

Dependency Inversion Principle (DIP)

 38

