
Testing
Tuesday, October 9

 1

Announcements

Bug fix to the front end; see #announcements
channel for fix

Sprint 1 due Friday at 5.

 2

Testing

How do you know your code will work?

If it doesn't work, how do know when you fixed it?

You can manually check the program each time.

Expensive, slow, and unrealistic

 3

Automated testing

Testing provides a consistent mechanism for
checking that your code meets all requirements.

Testing is automated, so you can continuously check
that your code is "up to spec."

 4

Testing

We'll only focus on unit-testing.

CS 362 goes in-depth into testing.

 5

Verification vs Validation

Validation: are we building the right product?

Acceptance testing, user demos, beta testing

Verification: are we building the product right?

Formal methods, unit tests, regression tests

 6

Types of testing

Development testing: done during development, by
developers and testers.

Release testing: done prior to a release or other
milestone. Done outside the dev team (e.g. the
customer)

User testing: done by the actual users (beta testing)

 7

Unit testing

“Unit tests test individual units (modules, functions,
classes) in isolation from the rest of the program.”

- Kent Beck

 8

JUnit
In Maven, by default, tests live under src/test/
java

Each production class has a test class, named *Test

e.g. Game -> GameTest

Test classes live in the same package as production
classes

You can access package protected method or fields

 9

Test methods

All test methods are annotated with @Test

@Test
public void testSomething() {
// …
}

 10

Test fixtures

If you need some set up, annotate the method with
@Before. This executes before the each test case.

@Before
public void setUp() {
}

This allows you to set up test fixtures. A fixture is the
context in which a test is run.

 11

Test fixtures

To release resources after a test, annotate the clean-
up method with @After.

@After
public void tearDown() {
}

 12

Test fixtures

@BeforeClass and @AfterClass allow you to
perform text fixture setup and teardown only once per
class run

@BeforeClass is executed once, before any of the
test methods in the class are run

@AfterClass once after all the tests are run).

 13

Assertions

Allow you to check for expected values.

org.junit.Assert class contains assert methods
that you can use: assertTrue, assertFalse,
assertEquals, etc.

assert is a Java keyword and will crash the JVM if it
fails (similarly to C/C++). They are also disabled by
default.

 14

Test execution
JUnit executes tests in a deterministic, but
unpredictable order.

Don't rely on the execution order for your tests to
pass.

This breaks the independence assumption of unit
tests

It might not work on a different JVM, or even on a
different run

 15

How do we write tests?

Blackbox testing: You don't know the
implementation

Whitebox testing: You know the implementation

 16

Blackbox testing

You don't know the structure of code (it's a black box,
you can't see inside)

Tests are derived from the specification,
documentation etc.

Useful for testing 3rd party libraries as well

 17

Equivalence class
partitioning

Partitioning the input into "equivalence classes"
allows to reasonable cover a good range of the input

e.g. validation for the username field: length between
1 and 25 characters, with no spaces

 18

ECP
username: length = [1, 25] with no spaces

 19

Input Output

"" Invalid

"averylongusernamethatislongerthan
25characters" Invalid

"username" Valid

"with space" Invalid

"averylongusernamewitha
spaceandmorethan25characters" Invalid

Boundary Testing
Similar to ECP, but focuses on edge cases.

For the username validation:

 20

Input Output

"" Invalid

"a" Valid

"25characters1234567890123" Valid

"26characters12345678901234" Invalid

Whitebox testing

You know the structure of the code being tested.

The goal is execute all lines of the code, branches,
etc.

 21

Measuring testedness

How good are you tests?

Statement/line coverage

Branch coverage

Path coverage

 22

Statement/line coverage

Measure how many (executable) statements did you
cover?

Expressed as a % (number of covered statements /
all statements) at different levels: method, class,
package, system.

Built into IntelliJ IDEA.

 23

Statement/line coverage

Does 100% line coverage guarantee a bug free
code?

No!

You can cover all lines, but not cover all branches.

 24

Branch coverage

Make sure that all branches in a program are
covered.

All decisions points must be exercised.

 25

Path coverage

Makes sure that all possible executions paths are
covered

Impossible for programs with loops

Is our program bug free?

No. How does our component interact with others?

 26

Integration testing

Test that your system's components interact as
expected

Can reveal more subtle bugs. A failed integration test
is a missing unit test.

You can expose the bug by writing a unit test on the
right component.

 27

Regression testing

Tests to make sure that bugs reappear.

For every bug, first write a test to expose the bug
(fails), then fix.

The test is now part of your regression suite.

 28

User testing

The users just use the system

This allows you to check that everything works as the
users expect to.

It also exposes incomplete features, missing/
misunderstood requirements etc.

 29

Assertions

Your tests are only as good as your assertions!

Weak assertions will let bugs through.

 30

Bad

@Test
public void testAttack() {
// ..some setup code..
 board.attack(3, 'A');
}

 31

OK…

@Test
public void testAttack() {
// ..some setup code..
 Result r = board.attack(3, 'A');
assertNotNull(r);
}

 32

Good

@Test
public void testAttack() {
// ..some setup code..
 Result r = board.attack(3, 'A');
assertEquals(AttackStatus.HIT,
r.getResult());

}

 33

