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Announcements

Sprint 2 is released 

Extra office hours on Friday,10-noon, in KEC 3057
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Attribution

Much of this material inspired by a great slides from 
Adam Badura, available here:  

https://cdn2-ecros.pl/event/codedive/files/
presentations/2015/Code-review.pptx 
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"Code review is having other people
look at your code

in order to find defects."
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Pros and cons
+ prevents releasing bugs 

+ ensures architecture quality  

+ facilitates knowledge transfer in the team 

- time consuming  

- don't work when the reviewer don't know the domain 

- can hurt feelings
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Formal Inspections

Developed by Michael Fagan in the 1970's  

A very heavyweight process 

4 roles and 7 steps
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Formal inspection
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Formal inspection

It works, but it's very expensive 

~9 person-hours per 200 lines of code 

Very impractical for today's realities 
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Light Weight approaches

Over the shoulder 

Pair programming 

Pull requests
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Over the shoulder

Reviewer sits with the developer and looks "over their 
shoulder" at the code 

The reviewer can give informal feedback which can 
be incorporated immediately (if possible).
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Over the shoulder
+ Easy to implement 

+ Easy to complete 

+ Easy to quickly incorporate changes 

- Reviewer cannot review at their own pace 

- No Verification 

- Reviewer only sees what the developer shows them
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Pair Programming

Code is written by a pair of developers. 

Code Review is "baked into" the process 
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Pair programming
+ Great for finding bugs and promoting knowledge 
transfer 

+ Review is in-depth 

- Reviewer is not objective 

- Hard to do remotely 

- No verification
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Pull Requests

Code is peer reviewed as part of the PR process 

No PR should be merged without being reviewed by 
at least on other developer
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Pull Request Code Reviews
+ Can be enforced by Version Control Practices 

+ PR serves as a verification of a review 

+ Can be done asynchronously (great of remote teams!) 

+ Reviewers can see the whole source code.  

- Changes by hard to understand without explanation 

- Important changes can be lost with a lot small 
insignificant changes
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Best practices: design
Single Responsibility Principle 
Code Duplication (copy/paste) 
Squint Test 
Left Code Better? 
Potential Bugs / Missing tests 
Error Handling 
Efficiency
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Best Practices: style
Method Names 
Variable Names 
Method length 
Class Length 
File Length 
Commented Code 
Number of Method Arguments 
Readability
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Best Practices: Testing

Test Coverage 

Testing at the right level 

Number of mocks 

Meets requirements

 19



Practical Suggestions

Review < 400 LOC at a time 

Don't review for > 60 minutes at a time 

Use a Peer Review Checklist (language/domain 
specific) 

Follow up with the review comments.
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Helpful Tools
https://www.codereviewhub.com/ 

https://www.jetbrains.com/upsource/ 

https://www.reviewboard.org/ 

https://reviewable.io/ 

https://www.gitcolony.com/ 

https://www.review.ninja/
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Pair Programming
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Extreme Programming

One the first agile methods 

TDD, continuous integration, refactoring were 
originally introduced by XP.
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XP Practices
Pair Programming
TDD 
Continuous Integration 
Refactoring 
Small Releases 
Coding Standards 
Collective Code Ownership 
Simple Design 
Sustainable Pace
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Pair programming
2 programmers, 1 computer 

Driver:
Controls keyboard & mouse 
Deals with the details 

Navigator:
Thinks at a higher level 
Watches for typos, logical errors 

Switch off every 10-20 minutes
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Why?
Fewer defects 

Higher design quality 

Higher job satisfaction 

Shared knowledge 

Team-building and communication is enhanced 

Raises your team's bus number
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Why not?

Two developers cannot be physically present 

Strong personal conflicts 

Task is simple and not challenging 

When participants need a break
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