
Code reviews
Thursday, October 11

 1

Announcements

Sprint 2 is released

Extra office hours on Friday,10-noon, in KEC 3057

 2

Attribution

Much of this material inspired by a great slides from
Adam Badura, available here:

https://cdn2-ecros.pl/event/codedive/files/
presentations/2015/Code-review.pptx

 3

https://cdn2-ecros.pl/event/codedive/files/presentations/2015/Code-review.pptx
https://cdn2-ecros.pl/event/codedive/files/presentations/2015/Code-review.pptx

"Code review is having other people
look at your code

in order to find defects."

 4

 5

Pros and cons
+ prevents releasing bugs

+ ensures architecture quality

+ facilitates knowledge transfer in the team

- time consuming

- don't work when the reviewer don't know the domain

- can hurt feelings

 6

Formal Inspections

Developed by Michael Fagan in the 1970's

A very heavyweight process

4 roles and 7 steps

 7

Formal inspection

 8

Formal inspection

It works, but it's very expensive

~9 person-hours per 200 lines of code

Very impractical for today's realities

 9

Light Weight approaches

Over the shoulder

Pair programming

Pull requests

 10

Over the shoulder

Reviewer sits with the developer and looks "over their
shoulder" at the code

The reviewer can give informal feedback which can
be incorporated immediately (if possible).

 11

Over the shoulder
+ Easy to implement

+ Easy to complete

+ Easy to quickly incorporate changes

- Reviewer cannot review at their own pace

- No Verification

- Reviewer only sees what the developer shows them

 12

Pair Programming

Code is written by a pair of developers.

Code Review is "baked into" the process

 13

Pair programming
+ Great for finding bugs and promoting knowledge
transfer

+ Review is in-depth

- Reviewer is not objective

- Hard to do remotely

- No verification

 14

Pull Requests

Code is peer reviewed as part of the PR process

No PR should be merged without being reviewed by
at least on other developer

 15

Pull Request Code Reviews
+ Can be enforced by Version Control Practices

+ PR serves as a verification of a review

+ Can be done asynchronously (great of remote teams!)

+ Reviewers can see the whole source code.

- Changes by hard to understand without explanation

- Important changes can be lost with a lot small
insignificant changes

 16

Best practices: design
Single Responsibility Principle
Code Duplication (copy/paste)
Squint Test
Left Code Better?
Potential Bugs / Missing tests
Error Handling
Efficiency

 17

Best Practices: style
Method Names
Variable Names
Method length
Class Length
File Length
Commented Code
Number of Method Arguments
Readability

 18

Best Practices: Testing

Test Coverage

Testing at the right level

Number of mocks

Meets requirements

 19

Practical Suggestions

Review < 400 LOC at a time

Don't review for > 60 minutes at a time

Use a Peer Review Checklist (language/domain
specific)

Follow up with the review comments.

 20

Helpful Tools
https://www.codereviewhub.com/

https://www.jetbrains.com/upsource/

https://www.reviewboard.org/

https://reviewable.io/

https://www.gitcolony.com/

https://www.review.ninja/

 21

https://www.codereviewhub.com/
https://www.jetbrains.com/upsource/
https://www.reviewboard.org/
https://reviewable.io/
https://www.gitcolony.com/
https://www.review.ninja/

Pair Programming

 22

Extreme Programming

One the first agile methods

TDD, continuous integration, refactoring were
originally introduced by XP.

 23

XP Practices
Pair Programming
TDD
Continuous Integration
Refactoring
Small Releases
Coding Standards
Collective Code Ownership
Simple Design
Sustainable Pace

 24

Pair programming
2 programmers, 1 computer

Driver:
Controls keyboard & mouse
Deals with the details

Navigator:
Thinks at a higher level
Watches for typos, logical errors

Switch off every 10-20 minutes

 25

Why?
Fewer defects

Higher design quality

Higher job satisfaction

Shared knowledge

Team-building and communication is enhanced

Raises your team's bus number

 26

Why not?

Two developers cannot be physically present

Strong personal conflicts

Task is simple and not challenging

When participants need a break

 27

